E	ARTH SCIENCE NAME
	DATE
	aked Science: "Birth of the Universe" Video Worksheet - Fill in the blanks as you watch the leo. BEWARE – some of these answers will go by quickly! Work in groups of 2-3 to get them all.
•	Everything we see around us is made of1:2, and3
•	Each and every atom that makes up the car were4by our growing5
•	Physicist Lawrence Krauss: "We really are part star dust and part Big Bang dust. Most of the atoms in our
	body are from the6 of7, but some of them have been around since the earliest
	moments of the8 "
•	Each and every atom was created over9 of years as our universe evolved.
•	In the beginning, there was10
•	According to Krauss, everything that now exists in our universe was once contained in a region smaller
	than a11
•	The idea that our universe was once tiny originated with American astronomer12
•	In the 1920s, most astronomers believed that everything visible in the night sky were13 that were
	all part of our own14, the Milky Way.
•	Hubble showed that other galaxies were speeding15 from ours, and the further they were,
	the16 they seemed to be moving.
•	The universe was17; and if the universe was expanding, then at some point in
	the past, it must have been18
•	Physicist David Spergel: "The Big Bang theory is not really a theory about how the universe began; it's
	really a theory of how the universe19"

• When the universe was a billionth of a billionth of a billionth of a billionth of a minute old, it was about

the size of a ______20______.

- As the universe expanded, it _____21_____.
- A trillionth of a second after the big bang, our newborn universe was still expanding. But it didn't contain

matter – it was pure _____22_____.

- In the baby universe, pure energy was converted into particles of _____23_____.
- The universe is now one millionth of a second old, and has expanded to _____24____ times the size of the

solar system. The universe was now relatively ____25_____.

• Over the next three minutes, the universe cools enough for protons and neutrons to bind together and

form the first atomic nuclei: _____26_____ and ____27____. But they were not yet proper

atoms – they were missing a vital ingredient – the _____28____, which were moving too fast to form

bonds with the nuclei.

• 380,000 years after the Big Bang, the universe had expanded to the size of the ______29______.

It had cooled from billions of degrees Fahrenheit to a few ______30_____. As it cooled, the electrons

slowed down, and the universe was now ready to make its first true _____31_____.

• Over the next millions of years, the young universe continued to expand and cool. So far, the universe had

only made ______32_____ and _____33_____ atoms. But the world we live in is made from more

than ____34__ different kinds of elements. The universe needed to get hydrogen and helium atoms to

____35____. And to do that, it needed to make _____36_____.

- Tiny imperfections in the fledgling universe would become _____37____ and _____38_____.
- Over millions of years, hydrogen atoms clumped together and _____39_____. The atoms began

fusing and releasing _____40____. The gas clouds started to burn brightly. Eventually, a

_____41____ was born.

- Early stars acted like giant thermonuclear reactors, creating new _____42_____.
- Fusion reactions inside these stars released enormous amounts of energy and heat, which forced atoms

to fuse to form new, heavier elements. Three helium nuclei combine to form _____43____; two

carbon nuclei fuse to form ______44_____; magnesium to form ______45_____; and

so on over a period of hundreds of thousands of years, until silicon fused to form _____46____.

• Iron is a very special atom. Even the extreme temperature inside stars cannot get iron to ____47____ into

heavier elements.

• To create the heavier elements like chromium and zinc and gold and platinum, the universe conjured up

massive exploding stars called _____48_____.

• When the giant stars that made the lighter elements ran out of _____49____, they collapsed in on

themselves, creating incredible amounts of energy and enormous explosions. Supernova explosions were

so powerful, they could fuse elements even heavier than iron, and _____50_____ the element production

line.

- Without exploding stars, life itself ______51____51_____51_____51_____
- Everything we can see on our planet was either made in the _____52____ or inside a _____53____.
- The universe we live in is nearly _____54____ years old.
- One theory of the end of the universe suggests that our universe will "run out of steam" and start to

_____55_____, ending in a single super-dense pinpoint known as the _____56_____.

• However, analysis of Type 1A supernovae suggests that the universe is actually _____57_____ in its

expansion, meaning that the universe will not collapse.

- Quite the opposite, it will continue to expand faster and faster. Our universe is literally ____58_____
 _____59_____.
- The most likely future is perhaps the most dismal one, where the universe becomes ____60____ and ____61____

and _____62_____. Space will become ______63____ and ______64_____.